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Abstract
Multiobjective stochastic programming is a field well located to tackle problems

arising in emergencies, given that uncertainty and multiple objectives are usually
present in such problems. A new concept of solution is proposed in this work, espe-
cially designed for risk-aversion solutions. A linear programming model is presented
to obtain such solution.

Keywords: Multiobjective stochastic programming; Linear programming; Risk aver-
sion

1 Introduction
Decision making is never easy, yet we often have to make decisions. Emergencies and
disaster management are fields in which many difficulties often arise, such as high un-
certainty and multiple conflicting objectives. To overcome such difficulties, risk-aversion
decisions are usually sought. Risk-aversion is the attitude for which we prefer to lower
uncertainty rather than gambling extreme outcomes (positive or negative).

Risk-aversion, although typically studied in problems with uncertainty, can as well
be considered when making decisions with multiple criteria. For instance, in the field
of disaster management, solutions that are sufficiently good for all criteria are usually
preferred than others that perform exceptionally good for some criteria but inadequately
for the others.

Multicriteria decision making (MCDM) is a field worth of consideration when studying
real-world problems. Such is the case that MCDM techniques have been recently used
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for solving problems as varied as: disaster management (Gutjahr and Nolz, 2016; Ferrer
et al., 2018), engineering (Sun et al., 2018), finance (Karsu and Morton, 2015; Angilella
and Mazzù, 2015), forest planning (Fotakis, 2015), healthcare (Guido and Conforti, 2017),
location of waste facilities (Eiselt and Marianov, 2015), police districting (Liberatore and
Camacho-Collados, 2016), route planning (Bast et al., 2016), train scheduling (Samà
et al., 2015) or urban planning (Spina et al., 2015; Carli et al., 2018).

This situation, in which multiple conflicting objectives have to be optimized, has led
to the definition of different solution concepts and methodologies. Depending on the
problem and the type of solution considered, a specific methodology should be applied.

The concept of efficiency reflects the intuition that for a solution to be acceptable,
another cannot exist improving that one in every objective. Multiple notions of efficiency
are available. The notation that this paper follows is the given in Ehrgott (2005).

Definition 1 (Efficiency, Ehrgott (2005)). Let f1(x), . . . , fK(x) be objective functions
to be minimized, and let X be the feasible set. A feasible solution x̂ ∈ X is called:

• Weakly efficient if there is no x ∈ X such that f(x) < f(x̂) i.e. fk(x) < fk(x̂) for
all k = 1, . . . ,K.

• Efficient or Pareto optimal if there is no x ∈ X such that fk(x) ≤ fk(x̂) for all
k = 1, . . . ,K and fi(x) < fi(x̂) for some i ∈ {1, . . . ,K}.

• Strictly efficient if there is no x ∈ X, x 6= x̂ such that f(x) ≤ f(x̂).

Furthermore, the set of efficient solutions is called the efficient set, and the image
under f of this set is the nondominated set. It is reasonable to assume that the solution
given to any problem must lie in the efficient set.

Uncertainty is another feature present in the studied problems, in which risk-averse
decisions will be preferred. The most common ways for dealing with the uncertainty
are stochastic programming and robust optimization, in which fuzzy optimization is also
included (Rommelfanger, 2004).

The different approaches for treating uncertainty do not respond to the desires of
the modeller, instead, they reflect the nature of the uncertainty. If the uncertainty
comes with an underlying known or estimated probability distribution, then stochastic
programming is used. On the other hand, if uncertainty comes from a lack of precision
or semantic uncertainty, then robust optimization is used. Robust optimization does not
assume a known (or existing) distribution (Ben-Tal and Nemirovski, 1999; Chen et al.,
2007; Klamroth et al., 2017). A recent review of robust optimization is written in Gabrel
et al. (2014). For an introduction to stochastic programming the reader is referred to
Birge and Louveaux (2011).

Stochastic programming is the widest used technique when there are historical data or
information to infer a probability distribution. Moreover, usually discrete distributions
are used, calling scenarios the different values. The concepts of value-at-risk (VaR) and
conditional value-at-risk (CVaR) are widely used for quantifying risk (see for instance
Yao et al. (2013); Mansini et al. (2015); Liu et al. (2017); Dixit and Tiwari (2019);
Fernández et al. (2019)). They are typically defined for losses distributions in finance,
where the right tail of the distributions are of interest.
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Definition 2 (CVaR, Rockafellar and Uryasev (2002)). Given FX(x) distribution func-
tion, and β ∈ [0, 1], the β-CVaR is the conditional expectancy over {x : FX(x) ≥ β}.

Consider now the following problem, in which multiple objectives to be minimized
and uncertainty are included simultaneously:

min
x∈X

(f1(x, ω), . . . , fK(x, ω))

The above problem is typically called multiobjective stochastic programming problem
(MSP), especially if ω, the uncertainty source, has a known probability distribution.

In this paper we introduce a new solution concept in multiobjective stochastic pro-
gramming based on risk-aversion preferences. Such concept is complemented with a
mathematical programming model to efficiently compute it, and computational experi-
ments are performed to assess its strengths.

Structure of paper The remaining of this paper is organized as follows. Section 2
includes the definition of a novel concept of solution for MSP problems and studies its
properties. Section 2.4 illustrates a basic example of how this solution can be found if
the decision space is finite and small.

Section 3 shows how to obtain such a solution with a linear programming model. An
application to the multicriteria knapsack problem is developed in Section 4.

2 Multiobjective stochastic programming
2.1 Literature review
Goicoechea (1980) develops PROTRADE method, where utility functions are defined to
aggregate objectives into a single objective stochastic problem. The resulting problem is
solved with an interactive method, where the decision-maker defines an expected solution
and a feasibility probability. Leclercq (1982) reduces the stochasticity by adding some
good measures to the list of objectives, such as the mean, variance, or probability of
being over/below a threshold. The resulting multiobjective deterministic problem is
solved aggregating the objectives, but it could be solved via other techniques.

Caballero et al. (2004) compare the stochastic approach with the multiobjective ap-
proach when using different techniques. The stochastic approach transforms the MSP
on a single-objective stochastic problem, while the multiobjective approach first reduces
the stochasticity transforming the MSP on a deterministic multiobjective problem. They
highlight that “the multiobjective approach forgets the possible existence of stochastic de-
pendencies between objectives.” Aouni et al. (2005) study stochastic goal programming,
where the deviation of the objective functions to some goals set beforehand to stochastic
values is minimized.

In Ben Abdelaziz and Masri (2010) a chance-constrained compromise approach is
proposed, with an example presented in Ben Abdelaziz et al. (2007). In Muñoz et al.
(2010) the INTEREST method is proposed. It is an interactive reference point method.
The decision-maker gives reference levels ui and probabilities βi, hoping to achieve a
solution x∗ such that P (fi(x∗) ≤ ui) ≥ βi. If this is infeasible, the decision-maker should
either increase the reference levels or decrease the probabilities of achievement. Ben
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Abdelaziz (2012) reviews different solutions methods for the MSP problem, categorizing
them as stochastic approach or multiobjective approach.

Some fields where MSP models have been developed are: forest management (Álvarez-
Miranda et al., 2018), multiple response optimization (Díaz-García and Bashiri, 2014),
energy generation (Teghem et al., 1986; Bath et al., 2004), energy exchange (Gazijahani
et al., 2018), capacity investment (Claro and De Sousa, 2010), disaster management
(Manopiniwes and Irohara, 2016; Bastian et al., 2016), portfolio optimization (Şakar and
Köksalan, 2012) and cash management (Salas-Molina et al., 2019), among others

2.2 Definitions and dominance relationship
The concept of CVaR allows to aggregate several scenarios by just looking at what
happens in the worst ones. The ordered weighted averaging (OWA) operators are defined
in Yager (1988), and independently in the field of locational analysis Carrizosa et al.
(1994); Nickel and Puerto (1999) under the name of ordered median function. These
concepts will allow us to aggregate different criteria by looking at the least desirable
ones, as a risk-aversion measure.

Definition 3 (OWA, Yager (1988)). Given a1, . . . , an ∈ R, the ordered weighted averag-
ing (OWA) operator with weights λ1, . . . , λn is defined as:

OWA(a1, . . . , an) =
∑
i

λia(i)

where
(
a(1), . . . , a(n)

)
is the ordered vector from largest to smallest (a1, . . . , an).

Remark 1. For certain weights, the OWA represents a known quantity:

• If λi = 1
n , the resulting OWA is the average of a.

• If λ1 = 1, and λj = 0 for j > 1, the OWA is the maximum of a.

• If λn = 1, and λj = 0 for j < n, the OWA is the minimum of a.

Yager and Alajlan (2016) later study how to assign weights for an OWA when criteria
have different importances.

Definition 4 (OWA with importances, Yager and Alajlan (2016)). Given a1, . . . , an ∈ R
with importances u1, . . . , un such that

∑
i ui = 1 the weights λj for the OWA can be

calculated with f , the weight generating function in the following manner:

1. Sort vector a such that a(1) ≥ a(2) ≥ . . . ≥ a(n).

2. With (·) as the order induced by a, define Tj =
∑j
k=1 u(k).

3. Let f be a function such that f : [0, 1] → [0, 1] and f(0) = 0, f(1) = 1. This
function is called weight generating function.

4. Obtain the weights as λj = f(Tj)− f(Tj−1).
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Example 1 (of Definition 4). Consider the following weight generating function, for a
given r ∈ (0, 1]:

f(x) =
{
x
r if x < r

1 if x ≥ r

Let (·) be the order such that a(1) ≥ · · · ≥ a(n), u(j) the weight associated to a(j),
and also let Tj =

∑j
k=1 u(k). We shall see know how the weights are obtained from f .

Let j∗ be such that Tj∗−1 < r ≤ Tj∗ .

• λ1 = f(T1) = f(u(1)) = u(1)
r , assuming u(1) < r

• λ2 = f(T2) − f(T1) = f(u(1) + u(2)) − f(u(1)) = u(1)+u(2)
r − u(1)

r = u(2)
r , assuming

u(1) + u(2) < r

• . . .

• λj∗ = f(Tj∗)− f(Tj∗−1) = 1−
(
u(1)+u(2)+···+u(j∗−1)

r

)
, since Tj∗ ≥ r

• λj∗+1 = f(Tj∗+1)− f(Tj∗) = 1− 1 = 0

• . . .

• λn = f(Tn)− f(Tn−1) = 1− 1 = 0

Consequently the OWA of a1, . . . , an with importances u1, . . . , un is:

OWA =
u(1)

r
a(1) +

u(2)

r
a(2) + · · ·+

[
1−

(
u(1) + u(2) + · · ·+ u(j∗−1)

r

)]
a(j∗)

=
u(1)a(1) + u(2)a(2) + · · ·+

(
r − u(1) − u(2) − . . .

)
a(j∗)

r

That is, the OWA is the average of the worst aj , weighted by their importances, with
total importance adding up to r

The starting point of this paper is the recurrent idea of representing ordered weighted
or ordered median operators by means of k-sums. k-sums (or k-centra in the location
analysis literature) are sums of the k-largest terms of a vector (Puerto et al., 2017). One
can trace back, at least to Kalcsics et al. (2002), the use of k-sums to represent ordered
median objectives. More recent references are for instance Blanco et al. (2013, 2014);
Ponce et al. (2018) and Filippi et al. (2019). This last reference introduces a normalized
version of k-centrum, named β-average that will be used in our paper.

Through the remaining of the paper consider that f jk(x) are functions to be minimized
within a feasible set X, with k = 1, . . . ,K representing K different objectives with
importances wk and j = 1, . . . , J encoding J different scenarios with probabilities πj .

Definition 5 (β-average, gβk (x), Filippi et al. (2019)). Given β ∈ (0, 1], for each crite-
rion k it can be defined gβk (x) which measures the average of f on the worst scenarios(
f1
k (x), . . . , fJk (x)

)
, with accumulated probability equal to β.

Remark 2 (Filippi et al. (2019)). Given a value β, if the sum of the probabilities of the
worst scenarios is exactly β, then the β-average is exactly (1− β)-CVaR.
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Example 2. Consider a point x, a fixed criterion k and 5 different scenarios with prob-
abilities πj and values of f jk given. Table 1 shows the β-averages for different values of
β, in which the scenarios have been ordered from largest value of f to smallest.

• For β = 0.2, the scenario j = 1 is the only one needed to obtain the worst scenario
with probability 0.2, and hence gβk (x) = 0.2·10

0.2 = 0.2.

• When β equals 0.3 it is necessary to include scenario 2, obtaining a β-average of
0.2·10+0.1·7

0.3 = 9.

• Finally if β = 0.5 scenario 3 needs to be added as well, but only with the probability
needed until reaching 0.5: gβk (x) = 0.2·10+0.1·7+0.2·4

0.5 = 7.

Table 1: Small example of β-average for different values of β

scenario β
1 2 3 4 5 0.2 0.3 0.5

πj 0.2 0.1 0.3 0.25 0.15 10 9 7
f jk(x) 10 7 4 3 2

When using the β-average the functions f jk(x) were transformed into gβk (x), a collec-
tion of K functions not depending on the scenario. An OWA will be defined now, via its
weight generating function, that will reduce the K β-averages into a scalar function.

Definition 6 (r-OWA, Or(x)). Given xi ∈ R with importance wi (i = 1, . . . ,K, wi ≥
0,
∑
i wi = 1) and r ∈ (0, 1], the function Or(x) is defined as the OWA with the following

weight generating function:

f(x) =
{
x
r if x < r

1 if x ≥ r

Remark 3. The definition of Or(x) is made on a similar manner that the one given of
the β-average (Definition 5), but it is done on a context with importances rather than
probabilities. Example 3 shows the similarities between both approaches.

Example 3. Consider a point x and let gk(x) be the evaluation of x under 5 different
criteria with importances wj . Table 2 shows the r-OWAs for different values of r, in
which the criteria have been ordered from largest values of gk(x) to smallest. Consider
the case r = 0.5:

1. As gk(x) are already ordered for largest to smallest, the values of Tk are:

T1 = 0.2, T2 = 0.2 + 0.1 = 0.3, T3 = 0.6, T4 = 0.85, T5 = 1

2. The values of Tk under f :

f(T1) = 0.2
0.5 , f(T2) = 0.3

0.5 , f(T3) = f(T4) = f(T5) = 1
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3. The weights of the OWA:

λ1 = 0.2
0.5 , λ2 = 0.3− 0.2

0.5 = 0.1
0.5 , λ3 = 1− 0.3

0.5 = 0.2
0.5 , λ4 = λ5 = 0

4. Consequently the r-OWA is:

r-OWA =
0.2x(1) + 0.1x(2) + 0.2x(3)

0.5 = 0.2 · 10 + 0.1 · 7 + 0.2 · 4
0.5 = 7

Table 2: Small example of r-OWA for different values of r

criterion r
1 2 3 4 5 0.2 0.3 0.5

wk 0.2 0.1 0.3 0.25 0.15 10 9 7
gk(x) 10 7 4 3 2

Remark 4. Given x1, . . . , xK and its associated importances w1, . . . , wK , then the λk of
the r-OWA are determined in such a way that:

Or(x) = max
{
λ̃1x1 + · · ·+ λ̃KxK

r
| λ̃k ≤ wk,

∑
λ̃k = r

}
with λk = λ̃k

r

Given r, β ∈ (0, 1] and x ∈ X, let us introduce the function hβr (x) as the r-OWA of
the β-averages. That is:

hβr (x) = Or

(
gβ1 (x), . . . , gβK(x)

)
Remark 5. If the importance of all criteria is the same (wk = 1

K for all k) and r = n
K

with n ∈ {1, . . . ,K}, then the hβr (x) is the average of the n worst β-averages. Recall
that this is called n-centra (Nickel and Puerto, 2005).

Definition 7 (Dominance). Let x and y feasible solutions (x, y ∈ X) and r, β ∈ (0, 1].
Then x dominates y (x % y) if hβr (x) ≤ hβr (y), where hβr (x) is the r-OWA of the β-
averages.

Definition 7 induces a domination relationship with the following properties:

Reflexivity Given x, hβr (x) ≥ hβr (x), and then x % x, so % is reflexive.

Transitiveness Given x % y, y % z, we have hβr (x) ≥ hβr (y) y hβr (y) ≥ hβr (z), and then
hβr (x) ≥ hβr (z), which leads to x % z, and we conclude that % is transitive.

Antisymmetry Given x % y, y % x, we have hβr (x) ≥ hβr (y) and hβr (y) ≥ hβr (x),
but from hβr (x) = hβr (y) it cannot be guaranteed that x = y, and hence % is not
antisymmetric.
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2.3 Idea of solution and dominance properties
Consider the multiobjective stochastic programming problem:

min
x∈X

(f1(x, ω), . . . , fK(x, ω))

The previously defined concepts of β-average and r-OWA transform the MSP prob-
lem into a deterministic multiple objective problem, and then into a deterministic single
objective problem.

MSP →MOP → LP (MIP )

f jk(x) β-average−−−−−−→ gβk (x) r-OWA−−−−→ hβr (x)

1. For every x ∈ X there is a function f jk
to be minimized which depends on the
scenario j and the criterion k.

2. The problem is transformed into a de-
terministic one with multiple objec-
tives (MOP) using the β-average con-
cept.

3. Computing the r-OWA, each x ∈ X is
assigned a scalar. The problem con-
sists of finding the x which minimizes
this hβr (x).

The solution procedure lies into what is usually called a scalarization approach. When
obtaining a minimizer of hβr (x) it is also desired that the optimal solution is efficient for
the associated MOP problem:

min
x∈X

(
gβ1 (x), . . . , gβK(x)

)
(MOP)

Proposition 1. Given x∗ minimum of hβr (x) the following statements hold:

1. x∗ is not necessarily efficient of the MOP problem.

2. x∗ is weakly efficient of the MOP problem.

3. If x∗ is the only minimum of hβr (x), then x∗ is efficient.

4. Given x∗ not efficient, an alternative y∗ can be found on a second phase such that
y∗ is efficient and hβr (x∗) = hβr (y∗).

These properties are known when using scalarization techniques (Ehrgott, 2005).
Hence only an example of the first statement will be shown.

Example 4 (x∗ is not necessarily efficient). Consider the example displayed on Table 3,
in which there are only two feasible solutions, two equiprobable scenarios (π1 = π2 = 1

2 ),
three equally important criteria (w1 = w2 = w3 = 1

3 ), and consider the values of β = 1
2

and r = 2
3 are taken.

The β-averages are (0.8, 0.4, 0.65) for the first alternative and (0.8, 0.45, 0.65) for the
second alternative. When computing the function hβr , both alternatives have an objective

8



Table 3: Values of two alternatives for each scenario j and criterion k, together with
their β-averages (β = 1

2 ) and r-OWAs (r = 2
3 )

Table 4: Alternative 1

k1 k2 k3
j1 0.80 0.40 0.30
j2 0.60 0.20 0.65

β-average 0.80 0.40 0.65
r-OWA 0.725

Table 5: Alternative 2

k1 k2 k3
j1 0.70 0.45 0.65
j2 0.80 0.30 0.50

β-average 0.80 0.45 0.65
r-OWA 0.725

value of 0.725. Consequently, even though the second alternative is an optimal solution
of hβr , it is not an efficient solution of the MOP problem as its β-averages are dominated
by those of the first alternative.

2.4 An illustrative example
The solution concept proposed will be now applied, first with a discrete (and small)
case. When the solution space is discrete, and all feasible solutions can be explicitly
enumerated, the steps are as follows:

Step 0 Normalize all objective functions f jk(x).

Step 1 Set values for β, r ∈ (0, 1].

Step 2 For every x ∈ X and every criterion define gβk (x) as:

gβk (x) = average of worst scenarios for criterion k
with probabilities adding up to β

Step 3 Define hβr (x) as:

hβr (x) = average of worst gβk (x) values
with importances adding up to r

Step 4 Search for x ∈ X minimizing hβr (x)

Assume a decision space with only four alternatives, evaluated under five different
scenarios with six criteria. For each of those alternatives it can be computed the value of
the functions f jk(x) to be minimized. Table 6 shows the values of f , evaluated on feasible
point x1, by each of the scenarios and criteria considered.

The first step consists on calculating the β-averages. Let assume a value of β = 0.3:

1. For the first criterion the worst scenario is j5, which has probability 0.1. The second
worst is j4, with a probability of 0.25. As the sum of those probabilities exceeds
the β fixed, for computing the β-average just a probability of 0.2 is considered:

gβ1 (x1) = 0.1 · 0.86 + 0.2 · 0.76
0.3 = 0.793
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Table 6: Values of alternative 1 by scenario (j) and criteria (k)

criteria
w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io
s π1 = 0.15 j1 0.51 0.27 0.39 0.45 0.75 0.76

π2 = 0.20 j2 0.58 0.65 0.47 0.26 0.90 0.24
π3 = 0.30 j3 0.48 0.44 0.90 0.50 0.93 0.65
π4 = 0.25 j4 0.76 0.18 0.01 0.90 0.56 0.02
π5 = 0.10 j5 0.86 0.36 0.21 0.28 0.63 0.72

2. gβ2 (x1) = (0.2 · 0.65 + 0.1 · 0.44) /0.3 = 0.580

3. gβ3 (x1) = (0.3 · 0.90) /0.3 = 0.900

4. gβ4 (x1) = 0.833, gβ5 (x1) = 0.930, gβ6 (x1) = 0.728

The last step is calculating the function hβr (x), that is, the r-OWA of the β-averages.
Table 7 calculates the r-OWA, and shows as well the information of the previously
calculated β-averages, when the value of r = 0.17 is taken.

Table 7: Values of alternative 1 by scenario (j) and criteria (k)

criteria
w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io
s π1 = 0.15 j1 0.51 0.27 0.39 0.45 0.75 0.76

π2 = 0.20 j2 0.58 0.65 0.47 0.26 0.90 0.24
π3 = 0.30 j3 0.48 0.44 0.90 0.50 0.93 0.65
π4 = 0.25 j4 0.76 0.18 0.01 0.90 0.56 0.02
π5 = 0.10 j5 0.86 0.36 0.21 0.28 0.63 0.72

β-average, β = 0.30 0.793 0.580 0.900 0.833 0.930 0.728
r-OWA, r = 0.17 0.927

Results The values of the functions for the other alternatives, as well as its β-averages
and r-OWAs are shown in Tables 13, 14 and 15, starting on Page 27. A summary of
the results can be seen in Table 8, where all the β-averages and r-OWAs are shown,
determining that the optimal alternative for the values of β and r given is Alternative 1.

Table 8: β-averages and r-OWAs for each of the 4 feasible alternatives of the example

β-averages r-OWA
gβ1 (x) gβ2 (x) gβ3 (x) gβ4 (x) gβ5 (x) gβ6 (x) hβr (x)

Alternative 1 0.793 0.580 0.900 0.833 0.930 0.728 0.927
Alternative 2 0.930 0.832 0.703 0.820 0.660 0.770 0.930
Alternative 3 0.765 0.775 0.468 0.643 0.950 0.883 0.943
Alternative 4 0.993 0.760 0.473 0.773 0.820 0.990 0.993
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Variations on β and r yield very different results. Figure 1a shows which of the four
alternatives has the lowest h value, depending on the values of β and r.

Figure 1b shows the optimal objective value when varying the parameters β and r. It
can be appreciated how h decreases when β and r increase. This is due to the fact that
the original f jk functions are to be minimized, and the larger the parameters β and r
are, more favourable scenarios/criteria will take part on the computation of hβr (x), hence
decreasing its optimal value.

(a) Optimal alternative for some values of r and
β

(b) Optimal values of function hβr (x) for some
values of r and β

Figure 1: Results from illustrative example

3 Computing the minimum: continuous case
A concept of solution was proposed with Definition 7. When the functions f jk(x) to be
minimized are given, a new function hβr (x) to be minimized is defined, with parameters β
and r such that hβr (x) is the r-OWA of the β-averages. If the decision space is sufficiently
small, the procedure shown in the above example obtains such a solution.

In this section, a mathematical programming model will be developed to obtain the
minimum of hβr (x) which allows one to obtain the proposed solution for bigger decision
spaces, including continuous ones.

3.1 Mathematical programming model

Given k and x ∈ X we have the vector
(
f1
k (x), . . . , fJk (x)

)
. Let

(
f

(1)
k (x), . . . , f (J)

k (x)
)
be

the ordered vector such that f (j1)
k (x) ≥ f (j2)

k (x) when j1 ≤ j2.
Given β ∈ (0, 1], let ̂ be the ordered scenario such that:

̂∑
j=1

π(j) ≥ β,
̂−1∑
j=1

π(j) < β

Alternatively:
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f
(1)
k (x) ≥ f (2)

k (x) ≥ · · · ≥ f (̂)
k (x) ≥ f (̂+1)

k (x) ≥ · · · ≥ f (J)
k (x)

1 = π(1) + π(2) + · · ·+ π(̂−1)︸ ︷︷ ︸
<β

+π(̂)

︸ ︷︷ ︸
≥β

+ · · ·+ π(J)

Also let:

π̂j =


πj j ∈ {(1), . . . , (̂− 1)}
β −

∑j=(̂−1)
j=(1) πj j = ̂

0 otherwise

The definition of π̂̂ is made in such a way that
∑
j π̂j = β. In this way, the average

of the β worst values can be computed as 1
β

∑J
j=1 π̂jf

(j)
k (x), which coincides with the

definition of β-average (Definition 4). This computation can be written as the following
optimization problem:

max
ũj

1
β

J∑
j=1

ũj · f jk(x)

s.t.
J∑
j=1

ũj = β

0 ≤ ũj ≤ πj j = 1, . . . , J

A more natural approach would be to consider uj = ũj

β . These uj represent the
proportion in which scenario j plays a part on the aggregated β-average. Introducing
that change, the model is:

max
uj

J∑
j=1

uj · f jk(x)

s.t.
J∑
j=1

uj = 1

0 ≤ uj ≤
πj
β

j = 1, . . . , J

The dual formulation is:

min
z,yj

z +
J∑
j=1

πj
β
yj

s.t. z + yj ≥ f jk(x) j = 1, . . . , J
z free, yj ≥ 0

(1)

12



And hence finding the x ∈ X which minimizes the average of the worst β scenarios
for a given k is:

min
x∈X

 max
ũj

1
β

∑J
j=1 ũjf

j
k(x)

s.t.
∑J
j=1 ũj = β

0 ≤ ũj ≤ πj j = 1, . . . , J


Or alternatively:

min
x∈X

 min
z,yj

z +
∑J
j=1

πj

β yj

s.t. z + yj ≥ f jk(x) j = 1, . . . , J
z free, yj ≥ 0 j = 1, . . . , J

 (2)

Which is equivalent to:

min
z,yj ,x

z +
J∑
j=1

πj
β
yj (3a)

s.t. z + yj ≥ f jk(x) j = 1, . . . , J (3b)
z free, yj ≥ 0 j = 1, . . . , J
x ∈ X

Remark 6. Models (2) and (3) are equivalent, as for any x ∈ X chosen in (3) the values
z and yj will get as small as allowed by constraint (3b), as this improves the objective
function (3a). Consequently for every x, its β-average will be computed appropriately,
and thus (3) obtains the x ∈ X with smallest β-average, as desired on (2).

For every k ∈ {1, . . . ,K} thanks to the problem (1) the function gβk (x) can be defined,
which measures for each x ∈ X the β-average for that criterion, being:

gβk (x) ≡ min
zk,ykj

zk +
J∑
j=1

πj
β
ykj

s.t. zk + ykj ≥ f jk(x) j = 1, . . . , J
zk free, ykj ≥ 0 j = 1, . . . , J

(4)

The already known approach for single criterion problems ends here. Given that, the
next step is finding a “good” solution for all k. That is:

min
x∈X

(
gβ1 (x), . . . , gβK(x)

)
Given r ∈ (0, 1] the r-OWA of the β-averages will be now computed (in accordance

with the definition given in Section 2). That is, the solution of the following problem is
sought:

max
t̃k

1
r

∑
k

t̃k · gβk (x)∑
k

t̃k = r

0 ≤ t̃k ≤ wk k = 1, . . . ,K

13



Or equivalently:

max
tk

∑
k

tk · gβk (x)∑
k

tk = 1

0 ≤ tk ≤
wk
r

k = 1, . . . ,K

Its dual formulation is:

min
z,vk

z +
∑
k

wk
r
vk

s.t. z + vk ≥ gβk (x) k = 1, . . . ,K
z free, vk ≥ 0 k = 1, . . . ,K

Replacing the value of gβk (x) given in (4) the next model is obtained:

min
z,vk

z +
∑
k

wk
r
vk (5a)

s.t. z + vk ≥

 min
zk,ykj

zk +
∑J
j=1

πj

β ykj

s.t. zk + ykj ≥ f jk(x) ∀j
zk free, ykj ≥ 0

∀k (5b)

z free, vk ≥ 0 ∀k (5c)

Model (5) calculates for a given x ∈ X the r-OWA of its β-averages, which coincides
with the notion of the function h(x) given in Section 2. This problem is not explicit in
that it contains nested optimization problems in the constraints. For that reason, we
propose a single level alternative for x ∈ X fixed.

Consider the following linear programming model:

min
z,vk,zk,ykj

z +
∑
k

wk
r
vk (6a)

s.t. z + vk ≥ zk +
J∑
j=1

πj
β
ykj ∀k (6b)

zk + ykj ≥ f jk(x) ∀k, j (6c)
ykj ≥ 0 ∀k, j (6d)
zk free, vk ≥ 0 ∀k (6e)
z free (6f)

Proposition 2. Transformation from model (5) to model (6) is valid, in that their
optimal solution and objective values coincide.
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Proof. Let
(
z∗, v∗k, z

∗
k, y
∗
kj

)
be the optimal solution of model (6). (z∗, v∗k) is feasible of

model (5), and it will be shown that it is also optimal for such model. Assume it exists
(z′, v′k) feasible of model (5) with:

z′ +
∑
k

wk
r
v′k < z∗ +

∑
k

wk
r
v∗k

This and constraint (6b) implies there exists k0 such that:

z′ + v′k0
< z∗k0

+
J∑
j=1

πj
β
y∗k0j

otherwise
(
z′, v′k, z

∗
k, y
∗
kj

)
would be optimal of model (6). Since z∗k0

and y∗k0j
are feasible

of model (6) they are also feasible of the model on the RHS of constraint (5b), and thus
z′ and v′k0

violate constraint (5b).

Proposition 2 showed that the optimal solutions of models (5) and (6) coincide.
Proposition 3 goes further showing the connection between their feasible sets.

Proposition 3. The feasible set of model (5) is a projection of the feasible set of
model (6).

Proof.

1. For each feasible solution (z, vk) of model (5) there is at least one feasible solution
of model (6) with same values (z, vk), being so the same objective function.
Let (z1, v1

k) a feasible solution of model (5), and (z∗k, y∗kj) the optimal solution where
the minimum of the right-hand side of equation (5b) is reached for each k. Since
constraints (6b), (6c), (6d) and (6e) are satisfied in model (5), (z1, v1

k, z
∗
k, y
∗
kj) is a

feasible solution or model (6).

2. For each feasible solution (z, vk, zk, ykj) of model (6), (z, vk) is a feasible solution
of model (5), being so the same objective function. Let (z2, v2

k, z
2
k, y

2
kj) a feasi-

ble solution of model (6). Since constraints (6b), (6c) and (6d) are included in
model (6), (z2

k, y
2
kj) is feasible for the model included in the RHS of constraint (5b)

and therefore greater than or equal to the minimum of that model, verifying:

z2 + v2
k ≥ z2

k +
J∑
j=1

πj
β
y2
kj ≥ min

zk +
J∑
j=1

πj
β
ykj


and so, feasible for model (5).
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Finally after proving the validity of model (6) it is possible to let x ∈ X free, with
the purpose of finding the one minimizing the function hβr (x):

min
z,vk,zk,ykj ,x

z +
∑
k

wk
r
vk

s.t. z + vk ≥ zk +
J∑
j=1

πj
β
ykj ∀k

zk + ykj ≥ f jk(x) ∀k, j
ykj ≥ 0 ∀k, j
zk free, vk ≥ 0 ∀k
z free
x ∈ X

4 Knapsack problem
The multiobjective stochastic knapsack problem is used to illustrate the usefulness of the
previously defined concept.

Definition 8 (Multiobjective stochastic knapsack problem). Let I be a collection of
objects with weights vi, which can be selected as members of a knapsack with maximum
weight V . There is a set of scenarios J , each of them with probability πj , and a set of
criteria K, with importances wk. For every pair of scenario-criterion, there is a benefit
associated with selecting object i, denoted by bijk. Which objects should be taken in
order to maximize benefit?

The above problem differs with the well-known knapsack problem in that there is
stochasticity and multiple objectives to be maximized.

The following MSP model can be adapted to analyze the problem. Note that to
preserve the sense of the optimization, rather than to maximize the benefits of the carried
objects, it will be minimized the value of the objects not chosen.

min
xi

{
f jk(x) :=

∑
i

(1− xi) bikj

}
s.t.

∑
i

vixi ≤ V ∀i

xi ∈ {0, 1} ∀i

(7)

When using the methodology developed in the previous sections, problem (7) is trans-
formed into the following mixed-integer linear programming model:
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min
z,vk,zk,ykj ,xi

z +
∑
k

wk
r
vk

s.t. z + vk ≥ zk +
J∑
j=1

πj
β
ykj ∀k

zk + ykj ≥
∑
i

(1− xi) bikj ∀k, j∑
i

vixi ≤ V ∀i

ykj ≥ 0 ∀k, j
xi ∈ {0, 1} ∀i
zk free, vk ≥ 0 ∀k
z free

(MSP)

For given r, β ∈ (0, 1], model (MSP) obtains the x∗ minimizing the r-OWA of the
β-averages. In order to illustrate the benefits of using model (MSP), a naive way of
solving problem (7) is considered:

min
xi

∑
k,j

wkπj
∑
i

(1− xi) bikj

s.t.
∑
i

vixi ≤ V ∀i

xi ∈ {0, 1} ∀i

(MIP)

Hence model (MIP) computes the average of the f jk , using the importances of the cri-
teria and the probability of the scenarios. It is clear that for “average” criteria-scenarios
x∗MIP, the optimal solution of model (MIP), outperforms x∗MSP, the optimal solution of
model (MSP). Conversely x∗MSP will improve x∗MIP in unfavourable criteria-scenarios, as
expected of a risk-averse solution.

4.1 Computational experiments
The following sections will show computational experiments, for different values of r and
β and different number of objects, scenarios and criteria. Algorithm 1 shows how the
random instances are created, given a number of objects, scenarios and criteria.

For each of the solved instances it will be recorded:

• tMSP, tMIP: Solution time in seconds of models (MSP) and (MIP). With them the
following value is calculated:

∆time := tMSP

tMIP
(time penalty factor)

∆time, the time penalty factor, indicates the increase of computing time when
solving model (MSP) rather than model (MIP).

• z∗MSP, z
∗
MIP: Optimal values of the models.
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Algorithm 1 Generating random data, with U(a, b) the uniform distribution in [a, b]
1: function randomInstance(|I|, |J |, |K|)
2: p← U(0.25, 0.75) . how many objects on average will fit in the knapsack
3: W ← 1

p . average weight of objects
4: for i ∈ I do
5: wi ← U(0.5W, 1.5W ) . weight of each object
6: for j, k ∈ J ×K do
7: bikj ← U(0, 1) . value of each object
8: end for
9: end for

10: end function

• fMSP (x∗MIP) , fMIP (x∗MSP): Objective value of x∗MIP in model (MSP) and vice versa.

• To grasp the difference between the MSP and the naive approach, the following
will be calculated:

∆avg := 100fMIP (x∗MSP)− z∗MIP
z∗MIP

(deteriorating rate)

∆tail := 100fMSP (x∗MIP)− z∗MSP
fMSP (x∗MIP) (improvement rate)

These quantities reflect what is the effect of making decision x∗MSP instead of x∗MIP.
Large values of ∆avg indicate high penalties for making decision x∗MSP instead of
x∗MIP in average scenarios-criteria. Similarly, the larger ∆tail is, the higher benefit is
obtained from making decision x∗MSP in tail events. They will be called deteriorating
rate and improvement rate

Models are solved in GAMS 26.1.0 with solver IBM ILOG CPLEX Cplex 12.8.0.0,
using a personal computer with an Intel Core i7 processor and 16Gb RAM.

Experiment 1 First experiment will consist on a full factorial design, in which the
values of |I|, |J |, |K|, r, β fall in these sets:

• |I| ∈ {50, 100, 200}

• |J | ∈ {5, 25, 100}

• |K| ∈ {3, 6, 9}

• r ∈ {0.33, 0.5, 0.67}

• β ∈ {0.05, 0.1, 0.5}

For each tuple (I, J,K) random data will be generated, using algorithm 1, which will
then be solved for every pair (r, β). All criteria and scenarios are given same importance
and probabilities. That is, wk = 1

|K| , πj = 1
|J| . Time limit was set in two hours by

instance, in which all but three of the 35 = 243 configurations were solved to optimality.

18



Experiment 2 For the next experiment 100 random instances will be created, keeping
the values of |I|, |J |, |K|, r, β constant and equal to the median value of the previous
experiment. That is, |I| = 100, |J | = 25, |K| = 6, r = 0.5, β = 0.1. All criteria and
scenarios are given same importance and probabilities. All 100 instances were solved to
optimality.

4.2 Results
Experiment 1 Table 16 shows for each of the 243 instances the solution times of the
MSP and the MIP models, and the deteriorating and improvement rates of using the
MSP solution instead of the MIP solutions (measured in deviation to MIP solution).

Table 9 shows the correlations between times and rates with the parameters of the
instance. It can be seen how the MSP solution has a higher impact when fewer scenarios
are considered. In addition to that, it can be appreciated that the MSP solution times
decrease when β increase, that is, when more scenarios are included in the β-average
computation.

Table 9: Correlations

|I| |J| |K| r β

tMSP 0.34 0.09 -0.11 -0.05 -0.19
tMIP 0.51 0.18 -0.14 -0.03 -0.07
∆time 0.31 0.11 -0.08 -0.02 -0.18
∆avg -0.05 -0.57 -0.28 -0.09 -0.36
∆tail -0.07 -0.56 -0.18 -0.21 -0.50

This appreciation is confirmed by Table 10, in which it can be seen that the median
time penalty factor (how many more times does it take to solve the MSP model than the
MIP one) is much smaller when β = 0.5 than when β = 0.05.

Table 10: Increase on computing times and MSP solution times, grouped by β

∆time tMSP
β min mean median max std min mean median max std
0.05 0.94 3188.96 32.77 50473.04 9472.55 0.12 659.49 6.32 7222.95 1787.07
0.10 0.98 1002.35 11.09 20192.48 3245.85 0.12 212.47 2.23 4765.42 728.49
0.50 1.06 19.14 3.75 414.29 55.51 0.13 3.49 0.67 62.14 9.05

Solution times of the MSP model are alarmingly high for some instances, due to the
fact that the admissible integrality gap has been set to zero. If that is relaxed, it can be
seen that all of the 243 instances reach an integrality gap smaller than 5% in under 3
seconds, 2% in under 5 seconds and 1% in under 88 seconds.

Table 11 groups instances by r and β, and shows the deteriorating and improvement
rates. It can be seen that the improvement rate (in the tail) is generally higher than the
deteriorating rate (in the average), especially in cases with small r and β.

This claim is also supported with Figure 2, where each of the 243 instances is shown
according to the values of ∆avg and ∆tail, and grouped by the values of (r, β). Almost all
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Table 11: Values of ∆avg and ∆tail, grouped by r and β

∆avg ∆tail
r β min mean median max std min mean median max std
0.33 0.05 0.03 1.94 1.87 5.68 1.42 0.28 4.37 4.21 9.18 2.43

0.10 0.02 1.70 1.61 5.68 1.44 0.18 3.54 2.85 9.18 2.42
0.50 0.00 0.93 0.52 4.46 1.08 0.00 1.57 0.92 4.99 1.46

0.50 0.05 0.03 1.87 1.90 4.30 1.30 0.29 3.58 3.30 6.73 1.89
0.10 0.02 1.65 1.14 4.30 1.37 0.13 2.87 2.47 6.59 1.86
0.50 0.00 0.72 0.54 3.51 0.75 0.00 1.07 0.79 3.79 1.01

0.67 0.05 0.03 1.64 1.17 3.93 1.24 0.32 3.04 3.06 6.15 1.62
0.10 0.01 1.50 1.10 3.93 1.31 0.12 2.43 2.02 5.84 1.58
0.50 0.00 0.60 0.50 3.16 0.66 0.00 0.80 0.59 3.64 0.81

of the instances ara above the imaginary line ∆avg = ∆tail, which shows that considering
the MSP solution improves in the tail more than it loses in the average situations. In
addition to that, it can be seen that the largest improvements in the tail are on instances
with β = 0.05 (one of the usual values taken for CVaR), and especially with the smallest
values of r. When r and β grow the differences between the MIP and MSP solutions are
reduced.

Figure 2: Values ∆avg and ∆tail for each of the 243 instances, grouped by values of (r, β)

Experiment 2 Table 17 contains the results for each of the 100 instances, all of them
with constant parameters |I| = 100, |J | = 25, |K| = 6, r = 0.5, β = 0.1.

Table 12 contains a summary of the results, where it is again seen that the improve-
ments in the tail are better than the loses in the average situations. Although single

20



instances might take a long computing time, the median MSP solution time (3.74s) is
definitely satisfactory. It is worth mentioning that the models were implemented without
providing any extra bounds or known cuts that could reduce solution times.

Table 12: Summary of set 6

tMSP tMIP ∆time ∆avg ∆tail

mean 16.98 0.20 91.31 2.03 3.09
std 46.57 0.03 254.68 1.12 1.49
min 0.53 0.14 2.81 0.16 0.86
25% 1.37 0.17 6.73 1.18 2.09
50% 3.74 0.19 19.72 1.93 2.81
75% 15.50 0.21 86.19 2.52 3.51
max 404.70 0.34 2175.82 5.67 8.57

Finally, figure 3 shows the values of f jk(x), where x = x∗MIP in blue squares and
x = x∗MSP in orange circles, for just one of the created instances. It can be appreciated
how x∗MIP performs better than x∗MSP in average criteria-scenarios, but x∗MSP is better
with unfavourable situations.

5 Conclusions
In this paper a new concept of solution has been proposed for Multiobjective Stochastic
Programming problems, focused on risk-aversion. As such, this concept can be partic-
ularly useful in real-life situations where there exists a great concern with respect to
unfavourable situations, such as emergency management.

The solution concept is supported by an efficient way to compute it by a Mathematical
Programming problem. This model is linear provided that the underlying problem can
be linearly representable. Numerical experiments have been conducted for validating this
approach, solving a multiobjective stochastic knapsack problem.

The research has also shown that the improvements in the tail (unfavourable situ-
ations) are consistently higher than loses on average situations, especially when small
values of the parameters β and r are chosen. These differences, although clearly notice-
able, are not as high as one could expect. This is possibly due to the randomness of
the data. It is reasonable to assume that in actual real-life problems there are choices
that are more conservative for every scenario and criterion, and thus being preferable for
risk-aversion attitudes.

Results showed that there is a clear increase in computational time; however this
is arguably acceptable as a price to pay for being risk-averse. Furthermore, this could
also be due to the random nature of the data. Nevertheless, it was also shown that
allowing for even rather small integrality gaps (1%) leads to drastic improvement on the
computing times.
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Figure 3: Single instance with 100 scenarios and 3 criteria. For each k, sorted values of
f jk(x), where x = x∗MIP in blue squares and x = x∗MSP in orange circles
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A Extra figures and tables

Table 13: Values of alternative 2 by scenario (j) and criteria (k)

criteria
w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io
s π1 = 0.15 j1 0.40 0.58 0.39 0.45 0.54 0.18

π2 = 0.20 j2 0.68 0.74 0.70 0.15 0.54 0.72
π3 = 0.30 j3 0.93 0.52 0.23 0.82 0.21 0.03
π4 = 0.25 j4 0.37 0.85 0.07 0.42 0.52 0.22
π5 = 0.10 j5 0.92 0.13 0.71 0.39 0.90 0.87

β-average, β = 0.30 0.930 0.832 0.703 0.820 0.660 0.770
r-OWA, r = 0.17 0.930

Table 14: Values of alternative 3 by scenario (j) and criteria (k)

criteria
w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io
s π1 = 0.15 j1 0.80 0.90 0.61 0.28 0.94 0.09

π2 = 0.20 j2 0.29 0.48 0.26 0.23 0.21 0.07
π3 = 0.30 j3 0.73 0.65 0.32 0.56 0.95 0.65
π4 = 0.25 j4 0.58 0.39 0.21 0.66 0.70 0.93
π5 = 0.10 j5 0.73 0.22 0.33 0.31 0.32 0.38

β-average, β = 0.30 0.765 0.775 0.468 0.643 0.950 0.883
r-OWA, r = 0.17 0.943

Table 15: Values of alternative 4 by scenario (j) and criteria (k)

criteria
w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io
s π1 = 0.15 j1 0.30 0.52 0.12 0.68 0.46 0.73

π2 = 0.20 j2 1.00 0.57 0.46 0.82 0.90 0.72
π3 = 0.30 j3 0.18 0.76 0.30 0.34 0.54 0.99
π4 = 0.25 j4 0.53 0.21 0.13 0.12 0.66 0.86
π5 = 0.10 j5 0.98 0.46 0.50 0.29 0.27 0.40

β-average, β = 0.30 0.993 0.760 0.473 0.773 0.820 0.990
r-OWA, r = 0.17 0.993
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Table 16: All instances of first experiment. The three instances with 200 objects, 100 scenarios, 6 criteria and β = 0.05 did not reach the optimal solution in 2 hours. The integrality
gaps of the solution shown are 0.31%, 0.24% and 0.19% for r = 0.33, 0.5 and 0.67 respectively

β → 0.05 0.1 0.5
r → 0.33 0.5 0.67 0.33 0.5 0.67 0.33 0.5 0.67

|I| |J| |K| tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail

50 5 3 0.12 0.13 3.75 8.01 0.15 0.12 3.75 8.01 0.18 0.14 3.51 4.54 0.14 0.14 3.75 6.59 0.12 0.12 3.75 6.59 0.20 0.17 3.51 3.79 0.12 0.12 3.75 5.84 0.12 0.12 3.75 5.84 0.13 0.12 3.16 3.64
6 0.22 0.11 3.79 5.07 0.25 0.11 3.79 5.07 0.18 0.11 1.03 3.01 0.30 0.13 3.79 4.01 0.25 0.13 3.79 4.01 0.23 0.15 1.48 2.10 0.23 0.16 3.77 3.58 0.23 0.14 3.77 3.58 0.18 0.17 1.48 1.47
9 0.28 0.14 1.76 6.67 0.36 0.14 1.76 6.67 0.20 0.15 1.58 3.26 0.22 0.14 2.02 5.66 0.21 0.14 2.02 5.66 0.22 0.14 1.24 2.10 0.20 0.15 2.02 4.39 0.22 0.13 2.02 4.39 0.25 0.15 1.20 1.37

25 3 0.76 0.18 2.47 5.37 0.66 0.17 2.47 2.85 0.26 0.17 2.00 1.55 0.64 0.18 2.47 5.08 0.62 0.16 2.47 2.51 0.25 0.15 1.00 0.97 0.60 0.17 2.47 4.93 0.51 0.16 1.79 2.52 0.26 0.14 1.00 0.69
6 1.20 0.16 1.87 5.77 0.91 0.29 1.96 3.70 0.49 0.18 0.79 1.81 1.15 0.18 1.87 4.93 0.74 0.18 1.14 3.51 0.41 0.18 0.70 1.55 0.93 0.16 1.17 4.33 0.78 0.18 1.17 3.45 0.38 0.16 0.71 1.22
9 0.69 0.16 0.61 4.21 0.78 0.16 0.43 2.78 0.57 0.16 0.67 0.92 0.52 0.15 0.61 3.90 0.96 0.16 0.44 2.14 0.61 0.16 0.67 0.65 0.69 0.15 0.61 3.25 1.02 0.18 0.39 1.75 0.47 0.18 0.51 0.68

100 3 1.15 0.15 0.07 2.43 0.78 0.15 0.07 2.15 0.44 0.14 0.07 0.16 1.07 0.14 0.07 2.02 0.83 0.19 0.07 1.74 0.34 0.14 0.07 0.16 1.14 0.15 0.07 1.81 0.85 0.16 0.07 1.53 0.36 0.14 0.07 0.14
6 2.51 0.20 0.77 2.24 4.45 0.22 0.78 1.19 3.52 0.20 0.23 0.47 2.62 0.25 0.77 1.99 5.09 0.18 0.31 1.10 5.45 0.20 0.19 0.29 2.70 0.22 0.77 1.38 3.31 0.19 0.47 0.63 5.59 0.19 0.23 0.27
9 4.06 0.18 0.03 0.41 1.47 0.17 0.03 0.30 1.07 0.16 0.00 0.00 2.75 0.17 0.03 0.29 1.12 0.16 0.03 0.30 1.11 0.16 0.00 0.00 2.06 0.19 0.03 0.32 1.10 0.16 0.03 0.18 1.16 0.17 0.00 0.00

100 5 3 1.24 0.26 3.81 7.63 1.29 0.20 3.81 7.63 0.37 0.22 2.08 4.47 0.72 0.18 3.81 5.22 0.66 0.18 3.81 5.22 0.32 0.27 1.56 2.33 0.74 0.19 3.38 4.02 1.13 0.23 3.38 4.02 0.28 0.20 0.63 1.36
6 8.68 0.22 5.68 7.12 8.69 0.19 5.68 7.12 0.43 0.17 4.46 2.92 0.65 0.20 4.30 5.64 1.06 0.19 4.30 5.64 0.35 0.17 0.81 1.28 1.18 0.22 3.93 4.20 0.64 0.18 3.93 4.20 0.28 0.18 0.53 0.88
9 3.31 0.18 2.19 3.14 3.26 0.20 2.19 3.14 0.67 0.18 0.97 2.90 1.04 0.20 2.19 2.86 0.96 0.20 2.19 2.86 0.23 0.14 0.64 1.88 1.02 0.17 0.92 2.31 0.90 0.17 0.92 2.31 0.24 0.18 0.41 1.18

25 3 10.65 0.17 2.96 6.52 3.39 0.18 2.07 4.00 0.29 0.15 0.48 1.73 7.09 0.18 2.96 5.46 1.83 0.19 2.96 3.67 0.30 0.14 0.48 0.95 3.46 0.19 2.19 4.98 1.30 0.16 2.96 3.50 0.34 0.16 0.41 0.59
6 32.12 0.20 2.78 4.47 9.18 0.19 0.78 3.53 0.44 0.18 0.52 1.31 26.53 0.18 2.59 3.06 3.64 0.22 0.61 2.47 0.32 0.15 0.26 0.79 12.77 0.17 0.60 2.62 0.90 0.17 0.50 2.00 0.41 0.17 0.26 0.65
9 8.58 0.18 0.72 5.52 1.90 0.17 0.97 3.49 0.42 0.18 0.24 0.82 6.32 0.19 0.72 4.75 1.24 0.16 0.97 3.06 0.51 0.20 0.24 0.44 1.60 0.19 1.12 3.83 0.88 0.19 1.12 2.53 0.59 0.17 0.50 0.23

100 3 51.23 0.22 2.21 1.12 1.67 0.21 0.27 1.36 0.82 0.18 0.09 0.25 22.70 0.21 2.21 1.16 1.22 0.19 0.34 1.05 0.81 0.18 0.05 0.17 18.75 0.16 2.21 1.17 0.84 0.22 0.34 0.92 0.75 0.18 0.05 0.13
6 48.25 0.18 0.76 2.56 31.87 0.17 0.62 2.05 62.14 0.15 0.42 0.70 24.73 0.18 0.71 2.48 27.08 0.18 0.62 1.81 42.18 0.19 0.28 0.55 20.26 0.17 0.60 2.10 22.09 0.20 0.75 1.48 7.79 0.20 0.17 0.50
9 2.16 0.19 0.37 1.48 3.34 0.18 0.29 0.77 1.84 0.17 0.18 0.41 1.80 0.17 0.34 1.25 2.87 0.20 0.28 0.69 2.22 0.19 0.26 0.22 1.67 0.18 0.34 1.14 2.77 0.19 0.20 0.63 3.09 0.16 0.08 0.13

200 5 3 146.24 0.23 1.61 3.81 140.12 0.20 1.61 3.81 7.71 0.23 1.30 1.61 151.22 0.21 1.61 3.30 135.09 0.24 1.61 3.30 4.60 0.21 1.30 1.58 83.44 0.22 1.10 3.06 89.20 0.21 1.10 3.06 4.21 0.22 1.30 1.55
6 88.70 0.19 1.08 2.50 89.69 0.19 1.08 2.50 5.14 0.17 0.72 0.83 96.44 0.19 1.08 1.91 91.66 0.18 1.08 1.91 2.93 0.18 0.91 0.58 39.26 0.18 0.94 1.68 32.92 0.18 0.94 1.68 0.70 0.17 0.58 0.44
9 468.37 0.15 3.73 9.18 484.89 0.14 3.73 9.18 29.46 0.16 1.74 4.99 304.04 0.16 3.69 6.24 305.90 0.16 3.69 6.24 2.71 0.16 1.74 3.54 110.03 0.15 3.38 4.92 107.34 0.14 3.38 4.92 0.91 0.17 1.20 2.28

25 3 5629.58 0.33 2.75 7.84 4765.42 0.24 2.24 5.33 4.86 0.24 0.81 1.40 5430.90 0.25 2.75 6.73 3394.56 0.24 2.75 5.05 5.32 0.28 0.81 1.22 6896.05 0.25 2.75 6.15 2546.43 0.21 2.75 4.91 5.66 0.34 0.81 1.13
6 2886.13 0.19 1.67 4.36 146.48 0.17 1.93 2.77 0.57 0.17 0.19 0.79 1651.91 0.21 1.67 4.20 15.06 0.22 1.93 2.29 0.71 0.21 0.19 0.81 93.66 0.19 1.46 3.64 19.36 0.19 1.93 2.02 0.55 0.18 0.12 0.40
9 1235.12 0.32 2.05 2.59 342.32 0.22 0.96 1.22 1.99 0.21 0.22 0.26 404.70 0.29 1.90 2.12 28.09 0.21 0.88 0.76 0.82 0.20 0.13 0.17 99.73 0.21 1.99 1.58 2.23 0.22 0.39 0.58 0.87 0.20 0.06 0.08

100 3 703.05 0.23 2.11 4.15 373.65 0.22 2.03 2.70 1.42 0.22 0.47 0.63 731.09 0.22 2.11 2.92 157.29 0.20 2.03 1.96 1.11 0.22 0.54 0.47 596.88 0.27 2.06 2.29 349.78 0.30 2.13 1.58 3.22 0.29 0.53 0.44
6 7222.95 0.22 0.60 3.43 1814.25 0.18 0.48 2.08 22.11 0.21 0.13 0.44 7217.64 0.14 0.47 2.57 916.42 0.21 0.48 1.75 7.04 0.24 0.28 0.27 7216.94 0.15 0.47 2.11 656.48 0.20 0.37 1.41 7.89 0.22 0.24 0.20
9 3321.23 0.34 0.07 0.28 16.40 0.20 0.02 0.18 2.33 0.17 0.08 0.08 198.14 0.19 0.07 0.32 14.84 0.21 0.02 0.13 2.31 0.21 0.08 0.05 47.16 0.23 0.08 0.33 9.77 0.21 0.01 0.12 2.63 0.20 0.06 0.04



Table 17: All instances of second experiment. |I| = 100, |J | = 25, |K| = 6, r = 0.5, β = 0.1

tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail

31.15 0.23 1.53 3.20 2.15 0.16 2.24 2.09
1.92 0.21 1.66 6.17 20.09 0.16 1.80 6.14
8.75 0.24 0.52 3.07 7.18 0.16 2.13 1.93
28.06 0.23 5.08 2.86 1.02 0.16 3.03 3.61
1.36 0.30 1.00 1.80 3.58 0.24 1.81 6.12
3.67 0.20 2.27 2.50 3.64 0.19 1.19 3.07
2.00 0.20 2.51 2.03 128.69 0.23 3.27 2.98

192.11 0.16 2.61 8.23 0.89 0.18 1.45 0.93
0.94 0.20 0.43 2.23 1.62 0.23 1.85 3.56
0.80 0.18 1.64 2.55 4.19 0.22 2.10 1.97
16.40 0.19 2.23 2.45 2.16 0.19 0.16 1.46
1.21 0.18 2.82 1.50 1.46 0.24 2.48 2.00
1.79 0.20 0.72 2.77 0.69 0.20 1.79 2.54
21.78 0.21 4.50 4.61 20.73 0.20 2.26 3.50
1.35 0.19 0.69 0.86 1.86 0.24 1.77 2.63
31.11 0.19 0.98 3.21 14.92 0.17 1.99 8.57
8.44 0.19 1.82 3.81 0.78 0.20 0.85 1.92
1.75 0.21 0.88 0.92 10.48 0.23 2.50 2.29
1.94 0.21 2.18 2.65 1.63 0.24 2.08 2.29
0.98 0.20 0.87 3.27 10.78 0.18 0.34 1.80
27.72 0.22 2.03 5.20 38.80 0.20 1.96 4.69
14.72 0.15 3.34 0.99 19.74 0.24 0.65 2.20
0.67 0.24 0.81 2.69 1.37 0.30 2.82 2.92
3.54 0.20 2.64 2.75 6.28 0.19 2.02 2.08
6.37 0.21 2.79 6.35 22.27 0.34 1.91 3.13
1.86 0.23 0.93 2.09 1.69 0.20 2.21 2.42
1.54 0.20 2.00 3.45 27.77 0.19 0.76 3.28
40.16 0.17 2.06 3.44 2.00 0.21 2.57 1.93
7.23 0.21 3.17 3.17 2.61 0.18 2.14 3.33
5.77 0.17 2.84 1.98 40.93 0.18 1.53 4.61
2.10 0.19 1.39 3.00 18.84 0.16 0.89 4.37

404.70 0.19 1.50 2.82 11.26 0.16 3.98 4.76
24.26 0.18 4.81 3.42 14.41 0.18 1.82 5.87
0.76 0.20 1.28 3.88 12.14 0.16 2.75 2.75
0.64 0.20 0.87 1.39 12.58 0.17 1.42 3.46
0.97 0.23 1.77 2.19 0.84 0.18 0.41 2.15
0.53 0.18 1.95 2.04 5.20 0.19 3.80 2.02
7.24 0.22 2.21 1.68 28.16 0.15 4.68 3.56
0.87 0.25 0.71 1.42 39.10 0.16 3.47 3.59
8.51 0.20 2.48 4.06 19.22 0.16 3.78 3.13
13.06 0.20 4.44 2.80 0.56 0.20 0.63 3.22
59.78 0.20 5.67 4.91 0.68 0.17 1.92 2.44
67.50 0.19 2.96 3.02 0.70 0.17 1.86 1.40
3.80 0.17 0.79 1.20 15.20 0.17 0.78 2.66
3.25 0.20 2.24 1.57 0.88 0.17 2.31 2.13
5.23 0.16 1.14 4.91 0.59 0.15 1.78 1.68
0.71 0.17 0.89 3.01 1.08 0.20 2.21 3.14
4.19 0.17 3.09 2.32 1.14 0.17 0.76 2.48
3.53 0.18 1.37 6.33 1.58 0.19 1.45 3.14
19.99 0.14 3.48 5.05 13.48 0.18 1.71 5.41
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